購物第一站 > 婦幼/圖書/玩具/樂器 > 書籍 > 深度學習入門教室

好康報報

推薦商品

別笑!我是法語學習書(彩色書+隨身小手冊+ MP3 CD) 大家學標準日本語【初級本】(超值組合:課本+文法解說‧練習題本+東京標準音MP3) 大家學標準日本語:中級本(超值組合:課本+文法解說‧練習題本+東京標準音MP3) 大家學標準日本語【初級本】+教學DVD(片長260分鐘)  2書合售 遇見外國人不口吃:百變話題英文口語訓練書(附贈外師親錄百變話題英文MP3) 英文E-mail,抄這本就夠了(暢銷增訂版) 用中文說印尼語:簡易中文注音學習法( 附贈MP3) 五合一英聽大進擊,靠一招就夠了!:熟悉1種聽力題型概念,活用在5大常見英聽測驗! 英文給它有點難,我靠畫畫搞定它 【超低67折】擎天數學最低12級分的祕密:學測篇+DVD NEW TOEIC990分 核心詞彙[基礎+提高分數篇](附MP3)2冊套書 運用心智圖,72小時5000單:連美國教授都愛用的英語單字學習法 救回你根本會開口的辦公室英文會話+聽得懂的英文聽力(2冊套書) 救回你根本會開口的辦公室英文會話 新多益單字先拆再記速背法(附MP3) 像老外一樣思考,搞定英文閱讀世界就是平的(附光碟) 免機票!跟著日本人的節慶祭典學日文(附MP3) 好讀易記!一定要會的英單巧拿本:基礎篇(附MP3) 不是權威不出書:新托福(寫作+口語+閱讀聽力)3書 愛玩咖一定要會的度假英語(附MP3) 用不到的我不學!英文會話7000句(附MP3) 英聽沒那麼難:聽出我的絕對英語耳(附MP3) 英聽沒那麼難:聽出我的絕對英語耳(附MP3) 想說就說!與老外對話,3個英文關鍵句就夠用!(附MP3) 專賣在美國的華人!英文萬用短句5000

深度學習入門教室

建議售價 435元 特價 435元
作者:谷岡広樹,康鑫、出版社:臉譜、出版日期:2019-01-25

深度學習入門教室介紹

書籍詳介

深度學習入門教室

內容簡介:

————超人氣暢銷書《演算法圖鑑》姊妹作,機器學習初學者最佳入門書!————

人工智慧時代關鍵能力!深度學習深在哪裡?
強化運算思維,建構邏輯概念,一次弄懂深度學習活用之道!

★ 精闢剖析深度學習發展史,詳述機器學習的基礎知識!
★完整解說熱門程式語言第一名Python的環境建構和基本語法!
★圖像化示範TensorFlow和Keras的安裝,開發AI必學必讀!
★介紹類神經網路的基本思考方式和程式範例,逐步加深理解!
★說明使用卷積神經網路的影像辨識演算法,進一步強化學習!
★全面了解提升深度學習準確度的演算法,掌握應用的訣竅!

█迎接運算時代,紮實學好Deep Learning的要點!

本書以想試著開始使用時下流行的深度學習之讀者為對象,從理論到實踐進行了統整。書中詳細說明深度學習基礎理論的類神經網路,以及相關的必要數學知識,同時講解程式原始碼,以實際動手操作的方式來幫助理解。

坊間已經有眾多的機器學習與深度學習相關書籍,但類神經網路理論的學習門檻相當高、深度學習應用程式框架入門難度深、不容易掌握進一步應用的要領等等,常令初學者無法看清活用深度學習的探索之路。

本書首先介紹類神經網路的概念,緊接著說明如何使用應用程式框架進行深度學習,讓學習者初步感受這個領域。接下來介紹各種應用,大量運用範例來說明。在此之後,對於想進一步學習理論的讀者,介紹機器學習的學習方式;對於想挑戰進階深度學習應用的讀者,說明演算法等等。

█豐富圖解一目瞭然,「文字辨識」、「影像辨識」、「自然語言處理」實際演練!

本書的目標是幫助讀者了解什麼是深度學習、什麼是AI之後,能夠實際動手實作,期使讀者不致一知半解,不會只是執行範例卻不知接下來能做什麼,而能學會確實地判斷為了何種目的該使用何種應用程式框架,以及實際進行的步驟。

想挑戰AI開發的理工科學生、想更上一層樓的工程師、想了解深度學習基礎理論的人、使用TensorFlow和Keras嘗試實際安裝的人、想弄懂機器學習所需的數學的人,都能從本書平易的解說中學習到必要的知識。

【本書的架構】

▌第1章:論及深度學習以及其背景的機器學習相關話題,解析人工智慧(AI)的概念。

▌第2章:說明Python的環境建構與深度學習所需函式庫的安裝方法,包括在Windows與Mac兩種環境上的說明,解說必需的基礎Python文法。

▌第3章:藉由能以簡潔的敘述來使用多個函式庫的Keras實作深度學習,同時製作影像辨識的程式來體驗深度學習。進行導入Keras並公開發佈的熱門函式庫TensorFlow、數值運算函式庫與資料繪製函式庫等等的準備。

▌第4章:解說類神經網路的理論,同時實際試著使用名為MNIST的文字辨識範例程式來加深理解。

▌第5章:說明使用卷積神經網路的影像辨識演算法。

▌第6章:介紹提升深度學習準確度的演算法、自然語言處理等,用於影像辨識以外的範例程式。

目錄:

序言╱本書的目的╱本書的架構
 
【第1章  深度學習與機器學習】
 
Lesson 1-1│深度學習的基礎:深階層的類神經網路
 
Lesson 1-2│深度學習的歷史:從人工智慧的進化來看深度學習
 
Lesson 1-3│機器學習的基礎知識:監督式學習與非監督式學習╱強化學習╱規則庫、知識庫╱統計機器學習╱預處理與特徵提取╱批量學習與線上學習╱效能評估╱泛化能力
 
Lesson 1-4│機器學習所需的數學:數值與表示式╱變數與常數╱等式與代入式╱向量與上下標╱求和記號╱最小值、最大值╱絕對值╱距離與範數╱微分與偏微分╱合成函數的微分╱指數與對數
 
COLUMN 1│什麼是人工智慧?
 
【第2章  Python的準備與基本語法】
 
Lesson 2-1│Python的安裝~Windows篇~:安裝至Windows
 
Lesson 2-2│Python的安裝~Mac篇~:在Mac可直接使用Python 2系列╱Homebrew的安裝╱pyenv的安裝╱安裝Python 3系列
 
Lesson 2-3│函式庫的安裝~Windows篇~:Windows版Anaconda的安裝
 
Lesson 2-4│函式庫的安裝~Mac篇~:Mac版Anaconda的安裝
 
Lesson 2-5│Python的基本語法:Hello, Python!!╱變數╱常數╱資料型別╱運算╱List型別與Tuple型別╱Set型別╱Dict型別╱字串的連結與反覆╱字串格式╱Sequence運算╱函式╱if陳述╱反覆陳述╱模組的匯入
 
COLUMN 2│使用Java的實作
 
【第3章  深度學習的體驗】
 
Lesson 3-1│TensorFlow與Keras的安裝:Windows篇:安裝TensorFlow╱Windows篇:安裝Keras╱Mac篇:安裝TensorFlow╱Mac篇:安裝Keras
 
Lesson 3-2│使用Jupyter Notebook:Jupyter Notebook的準備╱Jupyter Notebook的使用方法╱POINT:於Mac執行時
 
Lesson 3-3│數值運算函式庫NumPy的使用方法:基本的使用方式
 
Lesson 3-4│資料繪製函式庫Matplotlib的使用方法:基本的使用方式
 
Lesson 3-5│以Keras體驗深度學習:從Kaggle下載影像╱製作影像辨識的程式
 
COLUMN 3│什麼是TensorFlow?
 
【第4章  類神經網路的基礎】
 
Lesson 4-1│神經元與感知器:神經元╱感知器
 
Lesson 4-2│激勵函數:各式各樣的激勵函數
 
Lesson 4-3│赫布理論與差量規則:權重的學習規則
 
Lesson 4-4│類神經網路的學習:區別狗與貓╱XOR問題╱多層感知器(類神經網路)╱OR問題╱AND問題╱NAND問題╱以類神經網路識別
 
Lesson 4-5│學習方法的差異與損失函數:類神經網路的學習方法╱從學習過程看損失函數╱關於損失函數
 
Lesson 4-6│梯度法:如何調整參數?╱類神經網路誤差的梯度求法
 
Lesson 4-7│反向傳播算法:什麼是反向傳播算法?╱鏈鎖律
 
Lesson 4-8│MNIST:Step 1. 以Jupyter Notebook新增檔案╱Step 2. 準備手繪影像資料╱Step 3. 製作模型╱Step 4. 類神經網路的學習
 
COLUMN 4│維度的詛咒與過適
 
【第5章  卷積神經網路】
 
Lesson 5-1│卷積神經網路的基礎:影像分類與視覺神經元╱讓1個神經元學習全部的輸入影像
 
Lesson 5-2│卷積運算:讓感受野滑動╱聚焦區域的移動
 
Lesson 5-3│卷積層:為了使其認識不同樣式╱POINT:Windows上務必安裝Graphviz
 
Lesson 5-4│深層卷積神經網路:使其能接受3維資料
 
Lesson 5-5│以補零卷積:收縮輸出的形狀╱輸入資料之周圍資訊的損失╱補零
 
Lesson 5-6│增廣範圍的卷積:什麼是步幅?╱使用補零
 
Lesson 5-7│卷積ReLU層:以非線性變換增進辨識
 
Lesson 5-8│池化層:以池化層處理╱池化層的優點與注意點
 
Lesson 5-9│全連結層:全連結層的處理╱修正全連結層╱想進行更複雜的判斷時
 
Lesson 5-10│深層卷積神經網路的學習:模型學習與訓練╱Step 1. 定義損失E╱Step 2. 初始化權重值w╱Step 3. 反覆修正權重值w
 
Lesson 5-11│過適與丟棄:過適的例子╱丟棄以防止過適╱丟棄的優點
 
Lesson 5-12│卷積的進一步詳細資訊:卷積層 vs. 全連結層╱深而小的區域感受野 vs. 淺而廣的感受野
 
COLUMN 5│使用GPU學習
 
【第6章  深度學習的應用】
 
Lesson 6-1│遞迴神經網路(RNN):RNN的特徵
 
Lesson 6-2│LSTM類神經網路:LSTM的特徵
 
Lesson 6-3│門閘遞迴單元(GRU):GRU的特徵╱能更有效率地記憶
 
Lesson 6-4│RNN語言模型:使其推測接下來將出現的單字
 
Lesson 6-5│Sequence-To-Sequence模型:Sequence-To-Sequence模型的特徵
 
Lesson 6-6│Attention:Attention的特徵
 
COLUMN 6│由上而下與由下而上
 
結語╱謝辭
參考文獻

書名深度學習入門教室
作者谷岡広樹,康鑫
分類電腦資訊
出版社臉譜
出版日期2019-01-25
ISBN9789862357156
語言繁體中文
購買連結https://tw.buy.yahoo.com/gdsale/FQ1054-8182968.html?co_servername=f8d78e17f7fc866fd4c0547de27c5982
所提供之商品資料來自Yahoo奇摩購物中心,若有任何錯誤,或贈品已更換、優惠內容已結束者,皆以購買當時之Yahoo奇摩購物中心所公佈資料為準。